Thorium: An energy solution

Thorium is plentiful & can be used to generate energy without creating transuranic wastes. Thorium’s capacity as nuclear fuel was discovered during WW II, but ignored because it was unsuitable for making bombs. A liquid-fluoride thorium reactor (LFTR) is the optimal approach for harvesting energy from Thorium, and has the potential to solve today’s energy/climate crisis. LFTR is a type of Thorium Molten Salt Reactor (Th-MSR). This video summarizes over 6 hours worth of thorium talks given by Kirk Sorensen and other thorium technologists.

  • Thorium is more abundant in nature than uranium.
  • It is fertile rather than fissile, and can only be used as a fuel in conjunction with a fissile material such as recycled plutonium.
  • Thorium fuels can breed fissile uranium-233 to be used in various kinds of nuclear reactors.
  • Molten salt reactors are well suited to thorium fuel, as normal fuel fabrication is avoided.

The use of thorium as a new primary energy source has been a tantalizing prospect for many years. Extracting its latent energy value in a cost-effective manner remains a challenge, and will require considerable R&D investment. This is occurring preeminently in China, with modest US support.

Nature and sources of thorium

Thorium is a naturally-occurring, slightly radioactive metal discovered in 1828 by the Swedish chemist Jons Jakob Berzelius, who named it after Thor, the Norse god of thunder. It is found in small amounts in most rocks and soils, where it is about three times more abundant than uranium. Soil contains an average of around 6 parts per million (ppm) of thorium. Thorium is very insoluble, which is why it is plentiful in sands but not in seawater, in contrast to uranium.

Thorium exists in nature in a single isotopic form – Th-232 – which decays very slowly (its half-life is about three times the age of the Earth). The decay chains of natural thorium and uranium give rise to minute traces of Th-228, Th-230 and Th-234, but the presence of these in mass terms is negligible. It decays eventually to lead-208.

When pure, thorium is a silvery white metal that retains its lustre for several months. However, when it is contaminated with the oxide, thorium slowly tarnishes in air, becoming grey and eventually black. When heated in air, thorium metal ignites and burns brilliantly with a white light. Thorium oxide (ThO2), also called thoria, has one of the highest melting points of all oxides (3300°C) and so it has found applications in light bulb elements, lantern mantles, arc-light lamps, welding electrodes and heat-resistant ceramics. Glass containing thorium oxide has both a high refractive index and wavelength dispersion, and is used in high quality lenses for cameras and scientific instruments.

Thorium oxide (ThO2) is relatively inert and does not oxidise further, unlike UO2. It has higher thermal conductivity and lower thermal expansion than UO2, as well as a much higher melting point. In nuclear fuel, fission gas release is much lower than in UO2.

The most common source of thorium is the rare earth phosphate mineral, monazite, which contains up to about 12% thorium phosphate, but 6-7% on average. Monazite is found in igneous and other rocks but the richest concentrations are in placer deposits, concentrated by wave and current action with other heavy minerals. World monazite resources are estimated to be about 16 million tonnes, 12 Mt of which are in heavy mineral sands deposits on the south and east coasts of India. There are substantial deposits in several other countries (see Table below). Thorium recovery from monazite usually involves leaching with sodium hydroxide at 140°C followed by a complex process to precipitate pure ThO2. Thorite (ThSiO4) is another common thorium mineral. A large vein deposit of thorium and rare earth metals is in Idaho.

The International Atomic Energy Agency (IAEA) and the OECD Nuclear Energy Agency (NEA) joint publication Uranium 2016: Resources, Production and Demand (often referred to as the Red Book) gives a figure of 6.2 million tonnes of total known and estimated resources (the 2018 edition of the same publication did not provide estimates of thorium resources). Data for reasonably assured and inferred resources recoverable at a cost of $80/kg Th or less are given in the table below, excluding some less-certain Asian figures. Some of the figures are based on assumptions and surrogate data for mineral sands (monazite x assumed Th content), not direct geological data in the same way as most mineral resources.

Estimated world thorium resources1

CountryTonnes
India846,000
Brazil632,000
Australia595,000
USA595,000
Egypt380,000
Turkey374,000
Venezuela300,000
Canada172,000
Russia155,000
South Africa148,000
China100,000
Norway87,000
Greenland86,000
Finland60,000
Sweden50,000
Kazakhstan50,000
Other countries1,725,000
World total6,355,000

Source: OECD NEA & IAEA, Uranium 2016: Resources, Production and Demand (‘Red Book’)1, using the lower figures of any range.

There is no international or standard classification for thorium resources and identified thorium resources do not have the same meaning in terms of classification as identified uranium resources. Thorium is not a primary exploration target and resources are estimated in relation to uranium and rare earths resources.

Monazite is extracted in India, Brazil, Vietnam and Malaysia, probably less than 10,000 t/yr, but without commercial rare earth recovery, thorium production is not economic at present. Chinese production is unknown. The 2014 ‘Red Book’ suggested that extraction of thorium as a by-product of rare earth elements (REE) recovery from monazite seems to be the most feasible source of thorium production at this time.

Thorium as a nuclear fuel

Thorium (Th-232) is not itself fissile and so is not directly usable in a thermal neutron reactor. However, it is ‘fertile’ and upon absorbing a neutron will transmute to uranium-233 (U-233)a, which is an excellent fissile fuel materialb. In this regard it is similar to uranium-238 (which transmutes to plutonium-239). All thorium fuel concepts therefore require that Th-232 is first irradiated in a reactor to provide the necessary neutron dosing to produce protactinium-233. The Pa-233 that is produced can either be chemically separated from the parent thorium fuel and the decay product U-233 then recycled into new fuel, or the U-233 may be usable ‘in-situ’ in the same fuel form, especially in molten salt reactors (MSRs).

Thorium fuels therefore need a fissile material as a ‘driver’ so that a chain reaction (and thus supply of surplus neutrons) can be maintained. The only fissile driver options are U-233, U-235 or Pu-239. (None of these is easy to supply)

It is possible – but quite difficult – to design thorium fuels that produce more U-233 in thermal reactors than the fissile material they consume (this is referred to as having a fissile conversion ratio of more than 1.0 and is also called breeding). Thermal breeding with thorium requires that the neutron economy in the reactor has to be very good (ie, there must be low neutron loss through escape or parasitic absorption). The possibility to breed fissile material in slow neutron systems is a unique feature for thorium-based fuels and is not possible with uranium fuels.

Another distinct option for using thorium is as a ‘fertile matrix’ for fuels containing plutonium that serves as the fissile driver while being consumed (and even other transuranic elements like americium). Mixed thorium-plutonium oxide (Th-Pu MOX) fuel is an analog of current uranium-MOX fuel, but no new plutonium is produced from the thorium component, unlike for uranium fuels in U-Pu MOX fuel, and so the level of net consumption of plutonium is high. Production of all actinides is lower than with conventional fuel, and negative reactivity coefficient is enhanced compared with U-Pu MOX fuel.

In fresh thorium fuel, all of the fissions (thus power and neutrons) derive from the driver component. As the fuel operates the U-233 content gradually increases and it contributes more and more to the power output of the fuel. The ultimate energy output from U-233 (and hence indirectly thorium) depends on numerous fuel design parameters, including: fuel burn-up attained, fuel arrangement, neutron energy spectrum and neutron flux (affecting the intermediate product protactinium-233, which is a neutron absorber). The fission of a U-233 nucleus releases about the same amount of energy (200 MeV) as that of U-235.

An important principle in the design of thorium fuel systems is that of heterogeneous fuel arrangement in which a high fissile (and therefore higher power) fuel zone called the seed region is physically separated from the fertile (low or zero power) thorium part of the fuel – often called the blanket. Such an arrangement is far better for supplying surplus neutrons to thorium nuclei so they can convert to fissile U-233, in fact all thermal breeding fuel designs are heterogeneous. This principle applies to all the thorium-capable reactor systems.

Th-232 is fissionable with fast neutrons of over 1 MeV energy. It could therefore be used in fast molten salt and other Gen IV reactors with uranium or plutonium fuel to initiate fission. However, Th-232 fast fissions only one tenth as well as U-238, so there is no particular reason for using thorium in fast reactors, given the huge amount of depleted uranium awaiting use.

In Norway, Thor Energy is developing and testing a thorium-bearing fuel for use in existing nuclear power plants. Fuel rods containing thorium additive (Th-Add) and also thorium MOX (with Pu) fuel rods were tested in a five-year irradiation trial that started in April 2013 at the Halden test reactor. The company is working towards obtaining regulatory approval for the commercial production and use of Th-Add fuel. In February 2018 a third batch of Th-MOX fuel pellets commenced testing. This fuel is promoted as a means to improve power profiles within commercial reactors.

Reactors able to use thorium

There are seven types of reactor into which thorium can be introduced as a nuclear fuel. The first five of these have all entered into operational service at some point. The last two are still conceptual:

Heavy Water Reactors (PHWRs): These are well suited for thorium fuels due to their combination of: (i) excellent neutron economy (their low parasitic neutron absorption means more neutrons can be absorbed by thorium to produce useful U-233), (ii) slightly faster average neutron energy which favours conversion to U-233, (iii) flexible on-line refueling capability. Furthermore, heavy water reactors (especially CANDU) are well established and widely-deployed commercial technology for which there is extensive licensing experience.

There is potential application to Enhanced Candu 6 (EC6) and ACR-1000 reactors fueled with 5% plutonium (reactor grade) plus thorium. In the closed fuel cycle, the driver fuel required for starting off is progressively replaced with recycled U-233, so that on reaching equilibrium 80% of the energy comes from thorium. Fissile drive fuel could be LEU, plutonium, or recycled uranium from LWR. Fleets of PHWRs with near-self-sufficient equilibrium thorium fuel cycles could be supported by a few fast breeder reactors to provide plutonium.

High-Temperature Gas-Cooled Reactors (HTRs): These are well suited for thorium-based fuels in the form of robust ‘TRISO’ coated particles of thorium mixed with plutonium or enriched uranium, coated with pyrolytic carbon and silicon carbide layers which retain fission gases. The fuel particles are embedded in a graphite matrix that is very stable at high temperatures. Such fuels can be irradiated for very long periods and thus deeply burn their original fissile charge. Thorium fuels can be designed for both ‘pebble bed’ and ‘prismatic’ types of HTR reactors.

Boiling (Light) Water Reactors (BWRs): BWR fuel assemblies can be flexibly designed in terms of rods with varying compositions (fissile content), and structural features enabling the fuel to experience more or less moderation (eg, half-length fuel rods). This design flexibility is very good for being able to come up with suitable heterogeneous arrangements and create well-optimised thorium fuels. So it is possible, for example, to design thorium-plutonium BWR fuels that are tailored for ‘burning’ surplus plutonium. And importantly, BWRs are a well-understood and licensed reactor type.

Pressurised (Light) Water Reactors (PWRs): Viable thorium fuels can be designed for a PWR, though with less flexibility than for BWRs. Fuel needs to be in heterogeneous arrangements in order to achieve satisfactory fuel burn-up. It is not possible to design viable thorium-based PWR fuels that convert significant amounts of U-233. Even though PWRs are not the perfect reactor in which to use thorium, they are the industry workhorse and there is a lot of PWR licensing experience. They are a viable early-entry thorium platform.

Fast Neutron Reactors (FNRs): Thorium can serve as a fuel component for reactors operating with a fast neutron spectrum – in which a wider range of heavy nuclides are fissionable and may potentially drive a thorium fuel. There is, however, no relative advantage in using thorium instead of depleted uranium (DU) as a fertile fuel matrix in these reactor systems due to a higher fast-fission rate for U-238 and the fission contribution from residual U-235 in this material. Also, there is a huge amount of surplus DU available for use when more FNRs are commercially available, so thorium has little or no competitive edge in these systems.

Molten Salt Reactors (MSRs): These reactors are still at the design stage but are likely to be very well suited for using thorium as a fuel. The unique fluid fuel can incorporate thorium and uranium (U-233 and/or U-235) fluorides as part of a salt mixture that melts in the range 400-700ºC, and this liquid serves as both heat transfer fluid and the matrix for the fissioning fuel. The fluid circulates through a core region and then through a chemical processing circuit that removes various fission products (poisons) and/or the valuable U-233. The level of moderation is given by the amount of graphite built into the core. Certain MSR designsc will be designed specifically for thorium fuels to produce useful amounts of U-233.

Accelerator Driven Reactors (ADS): The sub-critical ADS system is an unconventional nuclear fission energy concept that is potentially ‘thorium capable’. Spallation neutrons are producedd when high-energy protons from an accelerator strike a heavy target like lead. These neutrons are directed at a region containing a thorium fuel, eg, Th-plutonium which reacts to produce heat as in a conventional reactor. The system remains subcritical ie, unable to sustain a chain reaction without the proton beam. Difficulties lie with the reliability of high-energy accelerators and also with economics due to their high power consumption. (See also information page on Accelerator-Driven Nuclear Energy.)

A key finding from thorium fuel studies to date is that it is not economically viable to use low-enriched uranium (LEU – with a U-235 content of up to 20%) as a fissile driver with thorium fuels, unless the fuel burn-up can be taken to very high levels – well beyond those currently attainable in LWRs with zirconium cladding.

With regard to proliferation significance, thorium-based power reactor fuels would be a poor source for fissile material usable in the illicit manufacture of an explosive device. U-233 contained in spent thorium fuel contains U-232 which decays to produce very radioactive daughter nuclides and these create a strong gamma radiation field. This confers proliferation resistance by creating significant handling problems and by greatly boosting the detectability (traceability) and ability to safeguard this material.

Prior thorium-fuelled electricity generation

There have been several significant demonstrations of the use of thorium-based fuels to generate electricity in several reactor types. Many of these early trials were able to use high-enriched uranium (HEU) as the fissile ‘driver’ component, and this would not be considered today.

The 300 MWe Thorium High Temperature Reactor (THTR) at Hamm-Uentrop in Germany operated with thorium-HEU fuel between 1983 and 1989, when it was shut down due to technical problems. Over half of its 674,000 pebbles contained Th-HEU fuel particles (the rest comprised graphite moderator and some neutron absorbers). These were continuously moved through the reactor as it operated, and on average each fuel pebble passed six times through the core.

The 40 MWe Peach Bottom HTR in the USA was a demonstration thorium-fuelled reactor that ran from 1967-74.2 It used a thorium-HEU fuel in the form of microspheres of mixed thorium-uranium carbide coated with pyrolytic carbon. These were embedded in annular graphite segments (not pebbles). This reactor produced 33 billion kWh over 1349 equivalent full-power days with a capacity factor of 74%.

The 330 MWe Fort St Vrain HTR in Colorado, USA, was a larger-scale commercial successor to the Peach Bottom reactor and ran from 1976-89. It also used thorium-HEU fuel in the form of microspheres of mixed thorium-uranium carbide coated with silicon oxide and pyrolytic carbon to retain fission products. These were embedded in graphite ‘compacts’ that were arranged in hexagonal columns (‘prisms’). Almost 25 tonnes of thorium was used in fuel for the reactor, much of which attained a burn-up of about 170 GWd/t.

A unique thorium-fuelled light water breeder reactor operated from 1977 to 1982 at Shippingport in the USA3 – it used uranium-233 as the fissile driver in special fuel assemblies that had movable ‘seed’ regions which allowed the level of neutron moderation to be gradually increased as the fuel agede. The reactor core was housed in a reconfigured early PWR. It operated with a power output of 60 MWe (236 MWt) and an availability factor of 86% producing over 2.1 billion kWh. Post-operation inspections revealed that 1.39% more fissile fuel was present at the end of core life, proving that breeding had occurred. A 2007 NRC report quotes a breeding ratio of 1.01. Chemically reprocessing the fuel was not attempted.

Indian heavy water reactors (PHWRs) have for a long time used thorium-bearing fuel bundles for power flattening in some fuel channels – especially in initial cores when special reactivity control measures are needed.

Want to know more?

Go here. https://world-nuclear.org/information-library/current-and-future-generation/thorium.aspx